skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ding, Lijun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Globerson, A; Mackey, L; Belgrave, D; Fan, A; Paquet, U; Tomczak, J; Zhang, C (Ed.)
    Augmented Lagrangian Methods (ALMs) are widely employed in solving constrained optimizations, and some efficient solvers are developed based on this framework. Under the quadratic growth assumption, it is known that the dual iterates and the Karush–Kuhn–Tucker (KKT) residuals of ALMs applied to conic programs converge linearly. In contrast, the convergence rate of the primal iterates has remained elusive. In this paper, we resolve this challenge by establishing new quadratic growth and error bound properties for primal and dual conic programs under the standard strict complementarity condition. Our main results reveal that both primal and dual iterates of the ALMs converge linearly contingent solely upon the assumption of strict complementarity and a bounded solution set. This finding provides a positive answer to an open question regarding the asymptotically linear convergence of the primal iterates of ALMs applied to conic optimization. 
    more » « less
    Free, publicly-accessible full text available December 15, 2025
  2. Abstract Empirical evidence suggests that for a variety of overparameterized nonlinear models, most notably in neural network training, the growth of the loss around a minimizer strongly impacts its performance. Flat minima—those around which the loss grows slowly—appear to generalize well. This work takes a step towards understanding this phenomenon by focusing on the simplest class of overparameterized nonlinear models: those arising in low-rank matrix recovery. We analyse overparameterized matrix and bilinear sensing, robust principal component analysis, covariance matrix estimation and single hidden layer neural networks with quadratic activation functions. In all cases, we show that flat minima, measured by the trace of the Hessian, exactly recover the ground truth under standard statistical assumptions. For matrix completion, we establish weak recovery, although empirical evidence suggests exact recovery holds here as well. We complete the paper with synthetic experiments that illustrate our findings. 
    more » « less
  3. null (Ed.)